The role of the 2- and 3-hydroxyl groups of 1D-myo-inositol 1,4,5-trisphosphate in the mobilisation of calcium from permeabilised human 1321N1 astrocytoma cells

Robert A. Wilcox ^a, Stefan R. Nahorski ^a, Deborah A. Sawyer ^b, Changsheng Liu ^{b,c} and Barry V.L. Potter ^{b,c}

(Received January 4th, 1992; accepted April 7th, 1992)

ABSTRACT

The functional significance of the 2- and 3-hydroxyl groups of 1D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P₃] was probed by using Ins(1,4,5)P₃ analogues variously modified at positions 2 and 3 or elsewhere. The intrinsic activities of these compounds were compared to that of Ins(1,4,5)P₃, using the calcium-mobilising receptor of the 1321N1 human astrocytoma cell line. The ligand-binding affinities were also determined using membrane preparations from rat cerebellum and bovine adrenal cortex. The results show that HO-2 and HO-3 of Ins(1,4,5)P₃ have a relatively insignificant role in receptor binding and calcium release. However, the possibility of a regulatory role for the 3-position of Ins(1,4,5)P₃ in these processes is proposed.

INTRODUCTION

1D-myo-Inositol 1,4,5-trisphosphate [Ins(1,4,5)P₃, 1] is now well characterised as a second messenger responsible for Ca^{2+} -mobilising activity from non-mitochondrial intracellular stores of Ca^{2+} . Recently, the cerebellar binding site of Ins(1,4,5)P₃ has been purified, reconstituted, and cloned²⁻⁵. However, there is a paucity of synthetic pharmacological agents which affect the interaction of Ins(1,4,5)P₃ with either its intracellular receptor or the enzymes involved in its metabolism, namely, Ins(1,4,5)P₃ 3-kinase and 5-phosphatase. Elucidation of the molecular interactions of Ins(1,4,5)P₃ with these three proteins could guide the

^a Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN (United Kingdom)

^b Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

^c School of Pharmacy and Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

Correspondence to: Dr. R.A. Wilcox, Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, UK.

chemical design of novel Ins(1,4,5)P₃ agonists, antagonists, and enzyme inhibitors, which may have therapeutic utility.

Several ring- and phosphate-modified analogues of $Ins(1,4,5)P_3$ have been synthesised^{6,7} and some progress has been made in understanding the role of the three phosphate and three hydroxyl groups in determining receptor binding and $Ins(1,4,5)P_3$ -induced release of Ca^{2+} . The critical importance of the 4,5-phosphate groups of $Ins(1,4,5)P_3$ in receptor binding was recognised in studies that used stereoisomers and positional isomers, while the presence of the 1-phosphate further enhances receptor affinity⁸. The significance of the hydroxyl (HO) groups to $Ins(1,4,5)P_3$ receptor interaction is less well characterised. However deoxy- $Ins(1,4,5)P_3$ analogues have been synthesised in order to probe the role(s) of $Ios(1,4,5)P_3$ analogues include the 2,3,6-trideoxy⁹, 2-deoxy¹⁰, 3-deoxy¹¹, and 6-deoxy¹² derivatives of $Ins(1,4,5)P_3$.

One model for the binding of Ins(1,4,5)P₃ to its receptor proposes that the phosphate groups make the dominant contribution to the binding energy, by interacting with pockets of positive charge on the receptor protein¹³. The potential for HO-2,3,6 to form intermolecular hydrogen bonds with the receptor protein and to fix the conformation of Ins(1,4,5)P₃ in solution, via intramolecular hydrogen bonds to the neighbouring phosphate groups, was also emphasised¹³.

A well recognised approach for probing the interaction of a hydroxyl group with a receptor protein involves isosteric replacement with fluorine¹⁴. The size and electronegativity of a fluorine substituent lie between those of a hydrogen and a hydroxyl group, and the C-F and C-OH bonds have similar lengths and polarisation¹⁵. However, a fluorine substituent can only accept and not donate hydrogen bonds¹⁵. Several fluorinated *myo*-inositol and *myo*-inositol phosphate analogues have been synthesised¹⁶⁻²⁶.

We now report on the use of several fluorinated derivatives of $Ins(1,4,5)P_3$ and analogues of $Ins(1,4,5)P_3$, based on *chiro*- and *scyllo*-inositol, to examine the contribution of HO-2,3 to (a) the binding of $Ins(1,4,5)P_3$ to the receptor and (b) the induction of the release of intracellular Ca^{2+} . The compounds used are the 2-deoxy-2,2-difluoro derivatives (2, 3, and 2/3, respectively) of 1D-, 1L-, and DL-*myo*-inositol 1,4,5-trisphosphate $[2,2F_2-D_-, -L_-, and -DL-$ *myo* $-Ins(1,4,5)P_3]^{25,26}$, 2-deoxy-2-fluoro-DL-*scyllo*-inositol 1,4,5-trisphosphate $[4, 2F_-DL-scyllo-Ins(1,4,5)P_3]^{25,26}$, 1D-3-deoxy-3-fluoro-*myo*-inositol 1,4,5-trisphosphate $[5, 3F_-D-myo$ -Ins(1,4,5)P_3]¹⁶, L-*chiro*-inositol 2,3,5-trisphosphate $[6, L-chiro-Ins(2,3,5)P_3]^{27,42}$, and L-*chiro*-inositol 1,4,6-trisphosphate $[7, L-chiro-Ins(1,4,6)P_3]^{28}$. The intrinsic activity of each of these derivatives was tested at the Ca^{2+} -mobilising $Ins(1,4,5)P_3$ receptor of 1321N1 human astrocytoma cells, and for receptor-binding affinity using rat cerebellar and bovine adrenal cortex $Ins(1,4,5)P_3$ receptors.

The 1321N1 astrocytoma cell line exhibits well characterised potent muscarinic and histaminergic receptor responses, which result $^{29-31}$ in the turnover of inositol lipids and the mobilisation of Ca^{2+} . These cells provide an appropriate model system for assessing the efficacies of $\text{Ins}(1,4,5)P_3$ analogues, since maximal doses of $\text{Ins}(1,4,5)P_3$ can release > 80% of preloaded $^{45}\text{Ca}^{2+}$ from the mobilisable intracellular stores of Ca^{2+} . In contrast, most other cell types 32 have $\text{Ins}(1,4,5)P_3$ -sensitive stores of calcium which represent only 25-60% of their total mobilisable Ca^{2+} pools and, thus, the indirect effects of agents on the $\text{Ins}(1,4,5)P_3$ -insensitive Ca^{2+} stores could complicate the analysis of potential agonists.

Hitherto, all Ca²⁺-mobilising inositol trisphosphates have been observed to exhibit binding affinities for the Ins(1,4,5)P₃ receptor which broadly correlate^{7,33} with their intrinsic activities for the release of Ca²⁺. Consequently, receptor-binding studies were also undertaken, using microsomal membrane preparations from rat cerebellum^{34,35} and bovine adrenal cortex³⁶⁻⁴⁰, each of which possess well characterised, specific, high-affinity binding sites for Ins(1,4,5)P₃.

EXPERIMENTAL

Inositol trisphosphate analogues.—The following inositol trisphosphate analogues were synthesised as previously described: 2F-DL-scyllo-Ins(1,4,5)P₃²⁶, 2,2F₂-

DL-myo-Ins $(1,4,5)P_3^{26}$, $2,2F_2$ -D-myo-Ins $(1,4,5)P_3^{26,41}$, $2,2F_2$ -L-myo-Ins $(1,4,5)P_3^{26,41}$, L-chiro-Ins $(2,3,5)P_3^{27,42}$, L-chiro-Ins $(1,4,6)P_3^{28}$, and 1D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-D-myo-Ins $(1,4,5)P_3$]¹². Each analogue was purified by anion-exchange chromatography on DEAE Sephadex A-25 and used as the triethylam-monium salt. 3F-D-myo-Ins $(1,4,5)P_3$ was obtained from Mind Labs. (USA). Prior to biological evaluation, an aqueous solution of each analogue was passed through Chelex-100 (Na⁺ form, 100–200 mesh, BioRad) in order to remove contaminating Ca^{2+} .

Binding studies.—Preparation of bovine adrenal cortices and the [³H]-Ins(1,4,5)P₃ binding and displacement assays were performed as described⁴³. Bound and free [³H]-Ins(1,4,5)P₃ were separated by rapid filtration through Whatman GF/B glass-fibre filters after incubation for 30 min at 4°.

Cerebella (200–250 mg) from male Wistar rats were homogenised at -4° , using a Polytron (setting 3, 2×10 s), in 10 vol of a buffer consisting of 20 mM NaHCO₃ and mm dithiothreitol pH 8.0 (buffer A.). The homogenate was centrifuged (5000g, 10 min, 4°), and the supernatant solution was harvested and then centrifuged (40000g, 20 min) at 4°. The resulting supernatant solution was discarded and the pellet was washed twice (40000g, 20 min) in buffer A, then resuspended in buffer A at 6–8 mg/mL, and stored at $\leq -20^{\circ}$. The cerebellar membranes were diluted in buffer A to yield a working concentration of 50 μ g of protein/assay tube. Equilibrium binding was fast, and bound and free [³H]-Ins(1,4,5)P₃ were separated by rapid centrifugation (14000g, 4 min) after incubation for 30 min at 4°. The supernatant solutions were rapidly aspirated, the pellets were solubilised using Lumosolve (100 μ L, May and Baker), and the radioactivity was then determined by scintillation counting.

In each binding assay, specifically bound [3 H]-Ins(1,4,5)P $_3$ (~ 2500 dpm/assay tube) was displaced by increasing doses (0 to 1 μ M) of each inositol trisphosphate analogue. The non-specific binding was defined by the addition of 10 μ M Ins(1,4,5)P $_3$.

Cell culture, permeabilisation, and calcium release.—1321N1 human astrocytoma cells, obtained from the American Type Culture Collection, were routinely cultured at 37° with a 5% CO₂ atmosphere, in Hepes-buffered Dulbecco's modified Eagles media supplemented with foetal-calf serum (10% v/v), penicillin (100 IU/mL), streptomycin (100 μ g/mL), fungizone (5 μ g/mL) and 2 mM glutamine (Gibco). The cell monolayers grown in 175-cm² flasks (Nunc, UK) were passaged using trypsin–EDTA solution (Gibco, UK), with a split ratio between 1:4 and 1:5, and then used for experiments when confluent. Prior to permeabilisation, 1321N1 cells were harvested using EDTA(0.02%)/NaCl(0.9%) solution buffered with 10 mM Hepes (pH 7.4). The ⁴⁵Ca²+-release experiments were performed using saponin-permeabilised cells⁴⁴, and 50 μ M ionomycin free acid (Calbiochem, UK) was used to define the size of the total releasable ⁴⁵Ca²+ pool.

The mobilisation of Ca²⁺ was also monitored in electropermeabilised 1321N1 cells⁴⁵, using a Ca²⁺-specific electrode⁴⁶, which was utilised to confirm the inactiv-

ity of compounds previously shown to exhibit weak binding affinity for the $Ins(1,4,5)P_3$ receptor. These putatively inactive compounds were tested at concentrations in the range of 10 to 30 μ M.

Data analysis.—The $K_{\rm d}$ and $B_{\rm max}$ values for receptor binding were estimated by the computer-assisted equilibrium-binding analysis program EBDA/LIGAND^{47,48}. EC₅₀ and $K_{\rm i}$ values were estimated using GraphPad INPLOT version 3.1 (GraphPad Software, USA). The combined data from the independent experiments are expressed as mean \pm SEM, where $n \ge 3$.

Reagents.—The following reagents were used: $Ins(1,4,5)P_3$ (Semat Technical), $^{45}CaCl_2$ ($\sim 1,000$ Ci/mmol, Amersham), $[^3H]$ -Ins $(1,4,5)P_3$ (17–30 Ci/mmol, New England Nuclear), and ATP and Quin-2 (Sigma).

RESULTS AND DISCUSSION

The permeabilised human 1321N1 astrocytoma cell line has been used to assess the relative potencies of a series of analogues of $Ins(1,4,5)P_3$, modified at positions 2 or 3 and elsewhere. A single cell type was used in order to avoid intercellular variation in the Ca^{2+} -mobilising efficacies of the $Ins(1,4,5)P_3$ receptor. To our knowledge, 1321N1 astrocytoma cells are the most responsive cell type to $Ins(1,4,5)P_3$, with maximal doses mobilising > 80% of the Ca^{2+} from the intracellular stores.

Several of the analogues tested were full and potent agonists at the Ca^{2+} -mobilising receptor of 1321N1 cells, with a rank order of $Ins(1,4,5)P_3$ (1) > 3F-D-myo- $Ins(1,4,5)P_3$ (5) > 2,2F₂-DL-myo- $Ins(1,4,5)P_3$ (2/3) > 2F-DL-scyllo- $Ins(1,4,5)P_3$ (4) > L-chiro- $Ins(2,3,5)P_3$ (6) (Fig. 1 and Table I). The rank order of ligand affinity in both adrenal cortex and cerebellum correlated well with the Ca^{2+} -release profiles for each compound. The reasons for the discrepancy between the K_d and K_i values and the EC_{50} values are due largely to differences in the assay procedures, are well characterised, and have been discussed extensively ⁴⁹.

L-chiro-Ins(1,4,6)P₃ (7) has a structure far removed from that of Ins(1,4,5)P₃, and it is not surprising that it was a very poor agonist, failed to induce Ca²⁺ release, and did not bind specifically at the receptor (Tables I and II). Although 7 possesses a vicinal bisphosphate group, presumably each phosphate group is axial; however, no data are available to confirm this conformation in solution. Nevertheless, L-chiro-Ins(1,4,6)P₃ was tested, since Ca²⁺-mobilisation, albeit weak, can be induced by 1D-myo-inositol 1,3,4,6-tetrakisphosphate, which does not possess a 4,5 vicinal bisphosphate group⁵⁰.

 $2,2F_2$ -DL-myo-Ins(1,4,5)P₃ (2/3) and 2F-DL-scyllo-Ins(1,4,5)P₃ (4) act as full agonists for Ca²⁺ release in SH-SY5Y cells²⁵. Other reports of biological activity for Ins(1,4,5)P₃ analogues modified at position 2 have appeared^{9,10,51,52} and some general principles have emerged. Position-2 does not appear to be significantly involved in the recognition of, and the interaction with, either the Ins(1,4,5)P₃ receptor or Ins(1,4,5)P₃-3-kinase, but substitution of HO-2 with such bulky groups

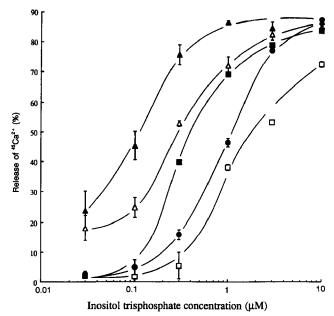


Fig. 1. The dose response curves for the release of $^{45}\text{Ca}^{2+}$ from saponin-permeabilised 1321N1 astrocytoma cells induced by the inositol trisphosphates: \triangle , Ins(1,4,5)P₃; \triangle , 3F-D-myo-Ins(1,4,5)P₃; \square , 2F-DL-scyllo-Ins(1,4,5)P₃; \blacksquare , 2,2F₂-DL-myo-Ins(1,4,5)P₃; \bullet , L-chiro-Ins(2,3,5)P₃.

as 4-aminocyclohexanecarbonyl or 4-aminobenzyl 10,51 or its replacement by fluorine 25 produces $Ins(1,4,5)P_3$ analogues which are poor substrates for the 5-phosphatase. Indeed, $2,2F_2$ -DL-myo-Ins $(1,4,5)P_3$ inhibited the 5-phosphatase with a high affinity (K_i 26 μ M) 25 .

 $2,2F_2$ -DL-myo-Ins $(1,4,5)P_3$ and the enantiomers (2 and 3) were tested for binding to the Ins $(1,4,5)P_3$ receptor. Predictably, the L enantiomer (3) was a poor ligand, whereas the D enantiomer (2), which possesses the appropriate 4,5-bisphosphate

TABLE I

The EC₅₀ values ^a for the release of 45 Ca²⁺ from saponin-permeabilised 1321N1 cells (n = 4)

Inositol trisphosphate	EC ₅₀ (μM)		
Ins(1,4,5)P ₃	0.10 ± 0.01		
3F-D-myo-Ins(1,4,5)P ₃	0.28 ± 0.02		
2F-DL-scyllo-Ins(1,4,5)P ₃	1.23 ± 0.02		
2,2F ₂ -DL-myo-(1,4,5)P ₃	0.35 ± 0.03		
$2,2F_2$ -D-myo- $(1,4,5)P_3$	Not tested		
2,2F ₂ -L-myo-(1,4,5)P ₃	$> 10 \mu M$ (calcium electrode)		
L-chiro-Ins(2,3,5)P ₃	1.00 ± 0.07		
L-chiro-Ins(1,4,6)P ₃	$\gg 30 \mu M$ (calcium electrode)		

^a Estimated using GraphPad INPLOT version 3.1 (see Experimental).

TABLE II						
K _i values for inhibition of membranes ^a	¹ [³ H]-Ins(1,4,5)P ₃	binding to	rat cerebellar	and bovine	adrenal	cortical

Inositol trisphosphate	Adrenal cortex	Cerebellum $K_{\rm d} 9.1 \pm 1.3 \text{ nM}$ $B_{\rm max} 3261.9 \pm 350^{\ b}$ $K_{\rm i} (\mu \text{M})$	
Ins(1,4,5)P ₃	$K_{\rm d}$ 6.3 \pm 0.5 nM $B_{\rm max}$ 454.4 \pm 14.2 ^b $K_{\rm i}$ (μ M)		
3F-D-myo-Ins(1,4,5)P ₃	13.3 ±0.6	21.3 ±0.9	
2F-DL-scyllo-Ins(1,4,5)P ₃	100.5 ± 9.8	58.1 ± 6.0	
2,2F ₂ -DL-myo-(1,4,5)P ₃	38.0 ± 3.0	57.8 ± 5.4	
2,2F ₂ -D-myo-(1,4,5)P ₃	22.1 ± 1.6	25.1 ± 0.4	
2,2F ₂ -L-myo-(1,4,5)P ₃	1940.0 ± 202.7	1865.5 ± 298.1	
L-chiro-Ins(2,3,5)P ₃	161.6 ± 2.9	159.0 ± 4.9	
L-chiro-Ins(1,4,6)P ₃	≫ 1000	≫ 1000	
D-6-deoxy-myo-(1,4,5)P ₃	not tested	3772.5 ± 391.5	

^a Displacement isotherms were constructed using at least seven concentrations $(nM-\mu M)$ of each displacing agent per experiment (n=4). K_d and B_{max} values were estimated using EBDA/LIGAND, and K_i values using GraphPad INPLOT version 3.1 (see EXPERIMENTAL). ^b fmol/mg of protein.

group for recognition, was only slightly less potent than 3F-D-myo-Ins $(1,4,5)P_3$ (5). Indeed, it has been demonstrated, using permeabilised SH-SY5Y cells, that virtually all of the Ca²⁺-mobilising activity of $2,2F_2$ -DL-myo-Ins $(1,4,5)P_3$ evolves from the D enantiomer 40 .

In 2F-DL-scyllo-Ins(1,4,5)P₃ (4), the single fluorine substituent is equatorial, whereas the HO-2 of Ins(1,4,5)P₃ is axial. Consequently, 2F-DL-scyllo-Ins(1,4,5)P₃ mimics the stereochemistry and electronic environment at position 2 of Ins(1,4,5)P₃ less efficiently than does $2,2F_2$ -DL-myo-Ins(1,4,5)P₃. This difference was reflected by the relatively elevated EC₅₀ value for Ca²⁺ release from 1321N1 cells and the moderate binding affinities (Fig. 1, Tables I and II).

3F-D-myo-Ins(1,4,5)P₃ (5) was the most potent ligand and agonist of the analogues tested and, clearly, the F-3 group therefore appropriately mimics both the electronic environment and stereochemistry of HO-3 of Ins(1,4,5)P₃. Position 3 of Ins(1,4,5)P₃ is the site of 3-kinase phosphorylation that produces the putative second messenger 1D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P₄]. Both 3F-D-myo-Ins(1,4,5)P₃ (5)¹⁶ and 3-deoxy-D-myo-Ins(1,4,5)P₃¹¹ are intrinsically resistant to the 3-kinase and are only slightly poorer agonists than Ins(1,4,5)P₃ in several cell types^{11,16,53}. The binding studies reported here support these findings and demonstrate that 3F-D-myo-Ins(1,4,5)P₃ is a very potent ligand for the Ins(1,4,5)P₃ receptor.

Although it appears that the HO-3 of Ins(1,4,5)P₃ does not contribute significantly to binding, the receptor may have a poor tolerance for bulky charged substituents at position 3. For example, Ins(1,3,4,5)P₄, despite possessing appropriately positioned 1,4,5-trisphosphate groups, binds with low affinity to the Ins(1,4,5)P₃ receptor ⁵⁰. Thus, HO-3 may act as a weak anchoring substituent such that changes in its orientation or its replacement may adversely affect binding to

the receptor. Indeed, this view is supported by the finding that L-chiro-Ins(2,3,5)P₃ (6), which differs structurally from Ins(1,4,5)P₃ only by virtue of the axial-chiro-HO-1 (or pseudo-myo-HO-3) group, remains a full agonist for Ca²⁺ release in 1321N1 and SH-SY5Y cells⁵. However, it is 10-fold less potent than Ins(1,4,5)P₃, compared to the 3-fold lower potency of 3F-D-myo-Ins(1,4,5)P₃ (Tables I and II)⁵³.

Predictably, 3F-D-myo-Ins(1,4,5)P₃ (5) and L-chiro-Ins(2,3,5)P₃ (6) are both resistant to, and potent inhibitors of, the 3-kinase (K_i 7.1 and 8.6 μ M, respectively)⁵³. 3F-D-myo-Ins(1,4,5)P₃ was hydrolysed by the 5-phosphatase at a rate similar to that of Ins(1,4,5)P₃, but inhibited dephosphorylation of [³H]-Ins(1,4,5)P₃. L-chiro-Ins(2,3,5)P₃ had a high affinity for the receptor, but was resistant to hydrolysis⁵³. Therefore, position 3 of Ins(1,4,5)P₃, which is crucial for 3-kinase phosphorylation and, perhaps, for hydrolysis by the 5-phosphatase, does not appear to play a direct role in binding to the Ins(1,4,5)P₃-receptor (however, see ref. 54).

In contrast to the HO-2 and HO-3, HO-6 of Ins(1,4,5)P₃ appears to have a more significant role in binding to the Ins(1,4,5)P₃, receptor and the interaction with the enzymes. 6-Methoxy-DL-myo-Ins(1,4,5)P₃ and 6-deoxy-D-myo-Ins(1,4,5)P₃ each binds with a moderate affinity to the 5-phosphatase, but both compounds are resistant to 5-phosphatase-catalysed dephosphorylation^{9,12}. Polokoff et al.⁹ proposed that the minimum structural requirement for 5-phosphatase activity against inositol polyphosphate substrates includes phosphate groups at positions 4 and 5 and a free HO-6. We concluded that HO-6 is critical for 5-phosphatase activity, but not for binding of the substrate. Thus, whereas 6-methoxy-DL-myo-Ins(1,4,5)P₃ and 6-deoxy-D-myo-Ins(1,4,5)P₃ are relatively potent inhibitors of 5-phosphatase activity 9,12, 6-deoxy-D-myo-Ins(1,4,5)P₃, in contrast to 6-methoxy-DL-myo-Ins(1,4,5)P₃, is one of the few modified inositol phosphates which can bind to the 3-kinase enzyme with a high affinity, and it is a weak substrate for the enzyme¹². We have proposed¹² that the relatively poor binding of 6-methoxy-DL-myo-Ins(1,4,5)P₃ to the 3-kinase is due to either reduction in the hydrogen bonding to the neighbouring phosphate groups or to steric effects associated with the methylation.

Ins(1,4,5)P₃ binding and Ins(1,4,5)P₃-induced release of Ca²⁺ appear to be facilitated by the presence of HO-6. Thus, 6-deoxy-D-myo-Ins(1,4,5)P₃ is a 400-fold weaker ligand than Ins(1,4,5)P₃ in rat cerebellar membranes (Table II). 6-Deoxy-D-myo-Ins(1,4,5)P₃ and 6-methoxy-DL-myo-Ins(1,4,5)P₃ are full agonists at the Ins(1,4,5)P₃ receptor, albeit 70- and 200-fold less potent, respectively, at mobilising Ca²⁺ than Ins(1,4,5)P₃^{9,12}. Thus, removal of the HO-6 of Ins(1,4,5)P₃ may affect the optimal conformation of the neighbouring 1- and 5-phosphate groups required for high-affinity receptor binding¹².

The data presented here and previous results indicate that, compared to the HO-6, HO-2 and HO-3 of $Ins(1,4,5)P_3$ have a relatively insignificant direct contribution to receptor interaction and Ca^{2+} release. However, the substituent status of the 3 position of $Ins(1,4,5)P_3$ may be the major regulatory mechanism for binding to the $Ins(1,4,5)P_3$ receptor in vivo, since phosphorylation of $Ins(1,4,5)P_3$ by the

3-kinase, to produce $Ins(1,3,4,5)P_4$, results in effective exclusion from the $Ins(1,4,5)P_3$ receptor⁵⁵. Further work is necessary in order to identify the structural features at position 3 which result in exclusion from the $Ins(1,4,5)P_3$ receptor and concomitantly the structural transitions required for the development of effective interaction with the $Ins(1,3,4,5)P_4$ receptor.

ACKNOWLEDGMENTS

This work was supported by the S.E.R.C. Molecular Recognition Initiative. R.A.W. was a British Council A.L.I.S scholar, and B.V.L.P. is a Lister Institute Fellow. We thank the University of Leicester for a Research Scholarship to D.A.S.

REFERENCES

- 1 M.J. Berridge and R.F. Irvine, Nature (London), 341 (1989) 197-205.
- 2 C.D. Ferris, R.L. Huganir, S. Supattapone, and S.H. Snyder, Nature (London), 342 (1989) 87-89.
- 3 T. Furuichi, S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda, and K. Mikoshiba, *Nature (London)*, 342 (1989) 32-38.
- 4 N. Maeda, M. Niinobe, and K. Mikoshiba, EMBO J., 9 (1990) 61-68.
- 5 S. Supattapone, P.F. Worley, J.M. Baraban, and S.H. Snyder, J. Biol. Chem., 263 (1988) 1530-1534.
- 6 D.C. Billington, Chem. Soc. Rev., 18 (1989) 83-122.
- 7 B.V.L. Potter, Nat. Prod. Rept., 7 (1990) 1-24.
- 8 M.J. Berridge and R.F. Irvine, Nature (London), 312 (1984) 315-321.
- 9 M.A. Polokoff, G.H. Bencen, J.P. Vacca, J. de Solm, S.D. Young, and J.R. Huff, J. Biol. Chem., 263 (1988) 11922–11927.
- M. Hirata, Y. Watanabe, T. Ishimatsu, T. Ikebe, Y. Kimura, K. Yamaguchi, S. Ozaki, and T. Koga, J. Biol. Chem., 264 (1989) 20303-20308.
- 11 M.J. Seewald, I.A. Aksoy, G. Powis, A.H. Fauq, and A.P. Kozikowski, J. Chem. Soc., Chem. Commun., (1990) 1638–1639.
- 12 S.T. Safrany, R.J.H. Wojcikiewicz, J. Strupish, S.R. Nahorski, D. Dubreuil, J. Cleophax, S.D. Gero, and B.V.L. Potter, FEBS Lett., 278 (1991) 252-256.
- 13 S.R. Nahorski and B.V.L. Potter, Trends Pharmacol. Sci., 10 (1989) 139-143.
- 14 M. Schlosser, Tetrahedron, 34 (1978) 3-17.
- 15 P.J. Card, J. Carbohydr. Chem., 4 (1985) 451-487.
- 16 A.P. Kozikowski, A.H. Fauq, I.A. Aksoy, M.J. Seewald, and G. Powis, J. Am. Chem. Soc., 112 (1990) 7403-7404.
- 17 A.P. Kozikowski, A.H. Fauq, and J.M. Rusnak, Tetrahedron Lett., 30 (1989) 3365-3368.
- 18 A.P. Kozikowski, A.H. Fauq, G. Powis, and D.C. Melder, J. Am. Chem. Soc., 112 (1990) 4528-4531.
- 19 J.D. Moyer, O. Reizes, A. Surender, C. Jiang, N. Malinowski, and D.C. Baker, Mol. Pharmacol., 33 (1988) 683-689.
- 20 J.D. Moyer, O. Reizes, N. Malinowski, C. Jiang, and D.C. Baker, in N.F. Taylor (Ed.), Fluorinated Carbohydrates, Chemical and Biochemical Aspects, Am. Chem Soc., Washington, DC, 1988, pp 43-58.
- 21 J.L. Offer, J.C. Metcalfe, and G.A. Smith, J. Chem. Soc., Chem. Commun., (1990) 1312-1313.
- 22 G. Lowe and F. McPhee, J. Chem. Soc., Perkin. Trans. 1, (1991) 1249-1253.
- 23 S.V. Ley, M. Parra, A.J. Redgrave, F. Sternfeld, and A. Vidal, Tetrahedron Lett., 30 (1989) 3557-3560.
- 24 J.F. Maracek and G.D. Prestwich, *Tetrahedron Lett.*, 30 (1989) 5401-5404.
- 25 S.T. Safrany, D. Sawyer, R.J.H. Wojcikiewicz, S.R. Nahorski, and B.V.L. Potter, FEBS Lett., 276 (1990) 91-94.
- 26 D. Sawyer and B.V.L. Potter, J. Chem. Soc., Perkin. Trans. 1, (1992) 923-932.

- 27 C. Liu, S.R. Nahorski, and B.V.L. Potter, J. Chem. Soc., Chem. Commun., (1991) 1014-1016.
- 28 C. Liu, S.R. Nahorski, and B.V.L. Potter, unpublished work.
- 29 E.A. Kunysz, A.D. Michel, R.L. Whiting, and K. Woods, Br. J. Pharmacol., 96 (1989) 271-278.
- 30 P.M. McDonough, J.H. Eubanks, and J.H. Brown, Biochem. J., 249 (1988) 135-141.
- 31 P.M. McDonough and D.C. Button, Cell Calcium, 10 (1989) 171-180.
- 32 M.J. Berridge, Annu. Rev. Biochem., 56 (1987) 159-193.
- 33 S.R. Nahorski, Trends Neurosci., 11 (1988) 444-448.
- 34 A.L. Willcocks, A.M. Cooke, B.V.L. Potter, and S.R. Nahorski, Biochem. Biophys. Res. Commun., 146 (1987) 1071–1078.
- 35 P.F. Worley, J.M. Baraban, S. Supattapone, V.S. Wilson, and S.H. Snyder, J. Biol. Chem., 262 (1987) 12132–12136.
- 36 A.J. Baukal, G. Guillemette, R.P. Rubin, A. Spät, and K.J. Catt, Biochem. Biophys. Res. Commun., 133 (1985) 532-538.
- 37 G. Guillemette, T. Balla, A.J. Baukal, A. Spät, and K.J. Catt, J. Biol. Chem., 262 (1987) 1010-1015.
- 38 S. Palmer, K.T. Hughes, D.Y. Lee, and M.J. Wakelam, Cell Signalling, 1 (1989) 147-156.
- 39 S. Palmer and M.J. Wakelam, Biochem. J., 260 (1989) 593-596.
- 40 A.L. Willcocks, R.A.J. Challiss, and S.R. Nahorski, Eur. J. Pharmacol., 189 (1990) 185-193.
- 41 S.T. Safrany, D.A. Sawyer, S.R. Nahorski, and B.V.L. Potter, Chirality, (1992) submitted.
- 42 C. Liu, S.R. Nahorski, and B.V.L. Potter, Carbohydr. Res., 234 (1992) 107-115.
- 43 R.A.J. Challiss, E.R. Chilvers, A.L. Willcocks, and S.R. Nahorski, Biochem. J., 265 (1990) 421-427.
- 44 J. Strupish, A.M. Cooke, B.V.L. Potter, R. Gigg, and S.R. Nahorski, *Biochem. J.*, 253 (1988) 901-905.
- 45 R.J.H. Wojcikiewicz, D.G. Lambert, and S.R. Nahorski, J. Neurochem., 54 (1990) 676-685.
- 46 D.L. Clapper and H.C. Lee, J. Biol. Chem., 260 (1985) 13947-13954.
- 47 G.A. McPherson, Computer Prog. Biomed., 17 (1983) 107-114.
- 48 P.J. Munson and D. Rodbard, Anal. Biochem., 107 (1980) 220-239.
- 49 D.L. Nunn and C.W. Taylor, Biochem. J., 270 (1990) 227-232.
- 50 D.J. Gawler, B.V.L. Potter, R. Gigg, and S.R. Nahorski, Biochem. J., 276 (1991) 163-167.
- 51 M. Hirata, F. Yanaga, T. Koga, T. Ogasawara, Y. Watanabe, and S. Ozaki, *J. Biol. Chem.*, 265 (1990) 8404–8407.
- 52 S.T. Safrany, R.J.H. Wojcikiewicz, J. Strupish, J. McBain, A.M. Cooke, B.V.L. Potter, and S.R. Nahorski, *Mol. Pharmacol.*, 39 (1991) 754-761.
- 53 S.T. Safrany, R.A. Wilcox, C. Liu, B.V.L. Potter, and S.R. Nahorski, Eur. J. Pharmacol. (Molecular Section), 226 (1992) 265-272.
- 54 C. Schultz, G. Gebauer, T. Metschies, L. Rensing, and B. Jastorff, *Biochem. Biophys. Res. Commun.*, 166 (1990) 1319-1327.
- 55 R.A.J. Challiss, A.L. Willcocks, B. Mulloy, B.V.L. Potter, and S.R. Nahorski, *Biochem. J.*, 274 (1991) 861–867.